Characterizing the conductance underlying depolarization-induced slow current in cerebellar Purkinje cells.

نویسندگان

  • Yu Shin Kim
  • Eunchai Kang
  • Yuichi Makino
  • Sungjin Park
  • Jung Hoon Shin
  • Hongjun Song
  • Pierre Launay
  • David J Linden
چکیده

Brief strong depolarization of cerebellar Purkinje cells produces a slow inward cation current [depolarization-induced slow current (DISC)]. Previous work has shown that DISC is triggered by voltage-sensitive Ca influx in the Purkinje cell and is attenuated by blockers of vesicular loading and fusion. Here, we have sought to characterize the ion channel(s) underlying the DISC conductance. While the brief depolarizing steps that triggered DISC were associated with a large Ca transient, the onset of DISC current corresponded only with the Ca transient decay phase. Furthermore, substitution of external Na with the impermeant cation N-methyl-d-glucamine produced a complete and reversible block of DISC, suggesting that the DISC conductance was not Ca permeant. Transient receptor potential cation channel, subfamily M, members 4 (TRPM4) and 5 (TRPM5) are nonselective cation channels that are opened by Ca transients but do not flux Ca. They are expressed in Purkinje cells of the posterior cerebellum, where DISC is large, and, in these cells, DISC is strongly attenuated by nonselective blockers of TRPM4/5. However, measurement of DISC currents in Purkinje cells derived from TRPM4 null, TRPM5 null, and double null mice as well as wild-type mice with TRPM4 short hairpin RNA knockdown showed a partial attenuation with 35-46% of current remaining. Thus, while the DISC conductance is Ca triggered, Na permeant, and Ca impermeant, suggesting a role for TRPM4 and TRPM5, these ion channels are not absolutely required for DISC.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differential Modulation of GABAA Receptors Underlies Postsynaptic Depolarization- and Purinoceptor-Mediated Enhancement of Cerebellar Inhibitory Transmission: A Non-Stationary Fluctuation Analysis Study.

Cerebellar GABAergic inhibitory transmission between interneurons and Purkinje cells (PCs) undergoes a long-lasting enhancement following different stimulations, such as brief depolarization or activation of purinergic receptors of postsynaptic PCs. The underlying mechanisms, however, are not completely understood. Using a peak-scaled non-stationary fluctuation analysis, we therefore aimed at c...

متن کامل

Dopamine signaling is required for depolarization-induced slow current in cerebellar Purkinje cells.

Brief strong depolarization of cerebellar Purkinje cells produces a slow inward cation current. This current, called depolarization-induced slow current (DISC), is triggered by Ca influx in the Purkinje cell and is attenuated by a blocker of vesicular fusion. Previous work in other brain regions, such as the substantia nigra and ventral tegmental area, has shown that dopamine can be released fr...

متن کامل

1 JN - 01168 - 2011 R 2 2 Characterizing the conductance underlying depolarization - 3 induced slow current ( DISC ) in cerebellar Purkinje cells

5 6 Yu Shin Kim, Eunchai Kang, Yuichi Makino, Sungjin Park, Jung Hoon Shin, 7 Hongjun Song, Pierre Launay and David J. Linden 8 9 10 Department of Neuroscience, the Johns Hopkins University School of Medicine, 725 11 N. Wolfe Street, Baltimore, MD 21205, USA; Institute for Cell Engineering, the 12 Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; 13 Department of Neurology,...

متن کامل

An inward current induced by a putative cyclic nucleotide-gated channel in rat cerebellar Purkinje neurons

The roles of cyclic nucleotide-gated (CNG) channels in sensory transduction have long been recognized. More recent studies found that CNG channels are distributed in multiple brain regions involved in memory and learning, including the cortex, hippocampus and cerebellum. These findings suggest that their functions are not limited to sensory perception, but also to neuronal plasticity phenomena,...

متن کامل

An inward current induced by a putative cyclic nucleotide-gated channel in rat cerebellar Purkinje neurons

The roles of cyclic nucleotide-gated (CNG) channels in sensory transduction have long been recognized. More recent studies found that CNG channels are distributed in multiple brain regions involved in memory and learning, including the cortex, hippocampus and cerebellum. These findings suggest that their functions are not limited to sensory perception, but also to neuronal plasticity phenomena,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 109 4  شماره 

صفحات  -

تاریخ انتشار 2013